论文标题
无监督的分解gan域自适应人员重新识别
Unsupervised Disentanglement GAN for Domain Adaptive Person Re-Identification
论文作者
论文摘要
尽管最近的人重新识别(REID)方法在监督的环境中获得了很高的准确性,但他们对未标记领域的概括仍然是一个悬而未决的问题。在本文中,我们介绍了一个新颖的无监督分解生成对抗网络(UD-GAN),以解决监督人员REID的领域适应问题。我们的框架共同训练REID网络,使用身份注释在源标记的域中提取判别特征提取,并通过在域上学习解散的潜在表示,将REID模型调整为未标记的目标域。目标域中的身份无关特征从潜在特征蒸馏出来。结果,REID的特点更好地包含了一个人在无监督的域中的身份。我们在Market1501,Dukemtmc和MSMT17数据集上进行了实验。结果表明,REID中无监督的域适应性问题非常具有挑战性。然而,我们的方法显示了一半域转移的进步,并为其中一个取得了最先进的绩效。
While recent person re-identification (ReID) methods achieve high accuracy in a supervised setting, their generalization to an unlabelled domain is still an open problem. In this paper, we introduce a novel unsupervised disentanglement generative adversarial network (UD-GAN) to address the domain adaptation issue of supervised person ReID. Our framework jointly trains a ReID network for discriminative features extraction in a source labelled domain using identity annotation, and adapts the ReID model to an unlabelled target domain by learning disentangled latent representations on the domain. Identity-unrelated features in the target domain are distilled from the latent features. As a result, the ReID features better encompass the identity of a person in the unsupervised domain. We conducted experiments on the Market1501, DukeMTMC and MSMT17 datasets. Results show that the unsupervised domain adaptation problem in ReID is very challenging. Nevertheless, our method shows improvement in half of the domain transfers and achieve state-of-the-art performance for one of them.