论文标题

Galois-Equivariant McKay Bijections for Primes分开$ Q-1 $

Galois-equivariant McKay bijections for primes dividing $q-1$

论文作者

Fry, A. A. Schaeffer

论文摘要

我们证明,对于大多数谎言类型组,在艾萨克斯 - 马尔 - 纳瓦罗(Isaacs-Malle-Navarro)的电感麦凯条件的证明中,马尔(Malle)和SETH使用的双线物品对Prime 2的电感条件和分裂Q-1的奇数也与某些Galois自动形态相对于某些Quivariant。特别是,这表明这些徒是证明Navarro-SP Aeth-Vallejo最近采用的感应性Galois-McKay条件的候选者。在途中,我们表明几个简单的谎言类型群体满足了麦凯 - 纳瓦罗对Prime 2的猜想。

We prove that for most groups of Lie type, the bijections used by Malle and Spaeth in the proof of Isaacs-Malle-Navarro's inductive McKay conditions for the prime 2 and odd primes dividing q - 1 are also equivariant with respect to certain Galois automorphisms. In particular, this shows that these bijections are candidates for proving Navarro-Spaeth-Vallejo's recently-posited inductive Galois-McKay conditions. On the way, we show that several simple groups of Lie type satisfy the McKay--Navarro conjecture for the prime 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源