论文标题
Galois-Equivariant McKay Bijections for Primes分开$ Q-1 $
Galois-equivariant McKay bijections for primes dividing $q-1$
论文作者
论文摘要
我们证明,对于大多数谎言类型组,在艾萨克斯 - 马尔 - 纳瓦罗(Isaacs-Malle-Navarro)的电感麦凯条件的证明中,马尔(Malle)和SETH使用的双线物品对Prime 2的电感条件和分裂Q-1的奇数也与某些Galois自动形态相对于某些Quivariant。特别是,这表明这些徒是证明Navarro-SP Aeth-Vallejo最近采用的感应性Galois-McKay条件的候选者。在途中,我们表明几个简单的谎言类型群体满足了麦凯 - 纳瓦罗对Prime 2的猜想。
We prove that for most groups of Lie type, the bijections used by Malle and Spaeth in the proof of Isaacs-Malle-Navarro's inductive McKay conditions for the prime 2 and odd primes dividing q - 1 are also equivariant with respect to certain Galois automorphisms. In particular, this shows that these bijections are candidates for proving Navarro-Spaeth-Vallejo's recently-posited inductive Galois-McKay conditions. On the way, we show that several simple groups of Lie type satisfy the McKay--Navarro conjecture for the prime 2.