论文标题
MAVS导航的统一NMPC方案,避免了3D碰撞的位置不确定性
A Unified NMPC Scheme for MAVs Navigation with 3D Collision Avoidance under Position Uncertainty
论文作者
论文摘要
本文提出了一个新型的非线性模型预测控制(NMPC)框架,用于在受约束环境中自动导航的微型航空车辆(MAV)。引入的框架使我们能够考虑MAV的非线性动态,并保证实时性能。我们的第一个贡献是设计一种计算有效的子空间聚类方法,以从几何约束到从3D LIDAR扫描仪获得的3D点云中的基础约束平面揭示。我们工作的第二个贡献是将提取的信息纳入NMPC的非线性约束中,以避免碰撞。我们的第三个贡献着重于通过使用香农熵来考虑定位和NMPC的不确定性来使控制器鲁棒。此步骤使我们能够跟踪位置或速度参考,或者在必要时无需。结果,在MAV的局部坐标中定义了避免碰撞限制,并且仍然保持活跃并确保避免碰撞,尽管定位不确定性,例如位置估计漂移。此外,随着平台继续执行任务,由于特征提取和循环封闭,这将导致不确定的位置估计。已使用凉亭环境中的各种模拟评估了建议框架的功效。
This article proposes a novel Nonlinear Model Predictive Control (NMPC) framework for Micro Aerial Vehicle (MAV) autonomous navigation in constrained environments. The introduced framework allows us to consider the nonlinear dynamics of MAVs and guarantees real-time performance. Our first contribution is to design a computationally efficient subspace clustering method to reveal from geometrical constraints to underlying constraint planes within a 3D point cloud, obtained from a 3D lidar scanner. The second contribution of our work is to incorporate the extracted information into the nonlinear constraints of NMPC for avoiding collisions. Our third contribution focuses on making the controller robust by considering the uncertainty of localization and NMPC using the Shannon entropy. This step enables us to track either the position or velocity references, or none of them if necessary. As a result, the collision avoidance constraints are defined in the local coordinates of MAVs and it remains active and guarantees collision avoidance, despite localization uncertainties, e.g., position estimation drifts. Additionally, as the platform continues the mission, this will result in less uncertain position estimations, due to the feature extraction and loop closure. The efficacy of the suggested framework has been evaluated using various simulations in the Gazebo environment.