论文标题

关于跨语言的通用表示

On Learning Universal Representations Across Languages

论文作者

Wei, Xiangpeng, Weng, Rongxiang, Hu, Yue, Xing, Luxi, Yu, Heng, Luo, Weihua

论文摘要

最近的研究表明,在跨语义的NLP任务上,跨语性预训练模型(PTM)(例如多语言BERT和XLM)具有压倒性的优势。但是,现有方法基本上通过涉及蒙版语言模型(MLM)物镜具有令牌级横向熵来捕获令牌之间的共发生。在这项工作中,我们扩展了这些方法来学习句子级别的表示,并显示了跨语性理解和产生的有效性。具体而言,我们提出了一种层次对比度学习(HICTL)方法来(1)学习以一种或多种语言分发的并行句子的通用表示,以及(2)将与语义相关的单词与每个句子的共享跨语言词汇区分开。我们对两个具有挑战性的跨语性任务进行评估,即Xtreme和机器翻译。实验结果表明,HICTL的表现优于最先进的XLM-R,其绝对增益在Xtreme基准上的准确性为4.2%,并且在高资源和低资源的英语对X转换任务上都可以实现实质性改进。

Recent studies have demonstrated the overwhelming advantage of cross-lingual pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-lingual NLP tasks. However, existing approaches essentially capture the co-occurrence among tokens through involving the masked language model (MLM) objective with token-level cross entropy. In this work, we extend these approaches to learn sentence-level representations and show the effectiveness on cross-lingual understanding and generation. Specifically, we propose a Hierarchical Contrastive Learning (HiCTL) method to (1) learn universal representations for parallel sentences distributed in one or multiple languages and (2) distinguish the semantically-related words from a shared cross-lingual vocabulary for each sentence. We conduct evaluations on two challenging cross-lingual tasks, XTREME and machine translation. Experimental results show that the HiCTL outperforms the state-of-the-art XLM-R by an absolute gain of 4.2% accuracy on the XTREME benchmark as well as achieves substantial improvements on both of the high-resource and low-resource English-to-X translation tasks over strong baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源