论文标题
关于theta函数幂的系数的消失
On the vanishing of coefficients of the powers of a theta function
论文作者
论文摘要
$ q $ -difference方程的Galois理论的结果{jStalpaen}导致以下问题:如果$ q \ in \ cs $,$ \ cs $,$ \ lmod q \ rmod <1 $,并且是否设置$ \ thq(z) laurent系列的某些系数可以扩展$θ_q^k(z)$,$ k \ in \ n^*$,消失吗?我们给出部分答案。
A result on the Galois theory of $q$-difference equations \cite{JSTALPAEN} leads to the following question: if $q \in \Cs$, $\lmod q \rmod < 1$ and if one sets $\thq(z) := \sum\limits_{m \in \Z} q^{m(m-1)/2} z^m$, can some coefficients of the Laurent series expansion of $θ_q^k(z)$, $k \in \N^*$, vanish ? We give a partial answer.