论文标题

用于改进股骨骨折分类的课程学习:与先验知识和不确定性调度数据

Curriculum learning for improved femur fracture classification: scheduling data with prior knowledge and uncertainty

论文作者

Jiménez-Sánchez, Amelia, Mateus, Diana, Kirchhoff, Sonja, Kirchhoff, Chlodwig, Biberthaler, Peter, Navab, Nassir, Ballester, Miguel A. González, Piella, Gemma

论文摘要

X射线图像的近端股骨骨折的适当分类对于治疗选择和患者的临床结果至关重要。我们依靠常用的AO系统,该系统描述了一个分层知识树,根据断裂的位置和复杂性,将图像分类为类型和亚型。在本文中,我们提出了一种基于卷积神经网络(CNN)自动分类为3和7个AO类的方法。众所周知,CNN需要具有可靠标签的大型且代表性的数据集,这些数据集很难为手头应用收集。在本文中,我们设计了一种课程学习(CL)方法,该方法在这种情况下改善了基本CNN的性能。我们的新型配方团聚了三种课程策略:单独加权训练样本,重新排序训练集以及数据的抽样子集。这些策略的核心是对训练样本进行排名的评分功能。我们定义了两个新颖的评分功能:一个来自特定领域的先验知识和原始的自定进度不确定性评分。我们在近端股骨X光片的临床数据集上进行实验。该课程将股骨骨折分类改善到经验丰富的外科医生的表现。最佳课程方法基于先验知识将培训集重新定位,从而使分类改善15%。使用公开可用的MNIST数据集,我们进一步讨论并证明了统一CL配方对三种受控且具有挑战性的数字识别方案的好处:具有有限的数据,在类不平衡的情况下以及在有标签噪声的情况下。我们的作品代码可在以下网址提供:https://github.com/ameliajimenez/curriculum-learning-prior-uncressination。

An adequate classification of proximal femur fractures from X-ray images is crucial for the treatment choice and the patients' clinical outcome. We rely on the commonly used AO system, which describes a hierarchical knowledge tree classifying the images into types and subtypes according to the fracture's location and complexity. In this paper, we propose a method for the automatic classification of proximal femur fractures into 3 and 7 AO classes based on a Convolutional Neural Network (CNN). As it is known, CNNs need large and representative datasets with reliable labels, which are hard to collect for the application at hand. In this paper, we design a curriculum learning (CL) approach that improves over the basic CNNs performance under such conditions. Our novel formulation reunites three curriculum strategies: individually weighting training samples, reordering the training set, and sampling subsets of data. The core of these strategies is a scoring function ranking the training samples. We define two novel scoring functions: one from domain-specific prior knowledge and an original self-paced uncertainty score. We perform experiments on a clinical dataset of proximal femur radiographs. The curriculum improves proximal femur fracture classification up to the performance of experienced trauma surgeons. The best curriculum method reorders the training set based on prior knowledge resulting into a classification improvement of 15%. Using the publicly available MNIST dataset, we further discuss and demonstrate the benefits of our unified CL formulation for three controlled and challenging digit recognition scenarios: with limited amounts of data, under class-imbalance, and in the presence of label noise. The code of our work is available at: https://github.com/ameliajimenez/curriculum-learning-prior-uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源