论文标题

通过自适应神经网络控制器的3D双足步行机器人的速度调节

Velocity Regulation of 3D Bipedal Walking Robots with Uncertain Dynamics Through Adaptive Neural Network Controller

论文作者

Castillo, Guillermo A., Weng, Bowen, Stewart, Terrence C., Zhang, Wei, Hereid, Ayonga

论文摘要

本文介绍了基于神经网络的自适应反馈控制结构,以调节动态不确定性下3D双足机器人的速度。现有的混合零动力学(HZD)的控制器通过实施不考虑模型和环境不确定性的启发式调节器来调节速度,这可能会严重影响控制器的跟踪性能。在本文中,我们从虚拟约束的尺寸表示的角度来解决机器人动力学中的不确定性,并提出基于自适应神经网络控制器的集成,以在模型参数不确定性的情况下调节机器人速度。提出的方法在动态不确定性下产生了改进的跟踪性能。本文使用的浅自适应神经网络不需要先验培训,并且有可能在实时机器人控制器上实施。提出了3D Cassie机器人的比较模拟研究,以说明在各种情况下所提出的方法的性能。

This paper presents a neural-network based adaptive feedback control structure to regulate the velocity of 3D bipedal robots under dynamics uncertainties. Existing Hybrid Zero Dynamics (HZD)-based controllers regulate velocity through the implementation of heuristic regulators that do not consider model and environmental uncertainties, which may significantly affect the tracking performance of the controllers. In this paper, we address the uncertainties in the robot dynamics from the perspective of the reduced dimensional representation of virtual constraints and propose the integration of an adaptive neural network-based controller to regulate the robot velocity in the presence of model parameter uncertainties. The proposed approach yields improved tracking performance under dynamics uncertainties. The shallow adaptive neural network used in this paper does not require training a priori and has the potential to be implemented on the real-time robotic controller. A comparative simulation study of a 3D Cassie robot is presented to illustrate the performance of the proposed approach under various scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源