论文标题
在三个维度中符合离散的gradgrad-complexes
Conforming Discrete Gradgrad-Complexes in Three Dimensions
论文作者
论文摘要
在本文中,构建了由有限元元素空间组成的第一个符合离散的三维gradgrad复合物的家族。这些离散的复合物是精确的,因为每个离散地图的范围是随后的映射的内核空间。这些空间可用于线性化的爱因斯坦 - 比安奇系统的混合形式。
In this paper, the first family of conforming discrete three dimensional Gradgrad-complexes consisting of finite element spaces is constructed. These discrete complexes are exact in the sense that the range of each discrete map is the kernel space of the succeeding one. These spaces can be used in the mixed form of the linearized Einstein-Bianchi system.