论文标题
大型深网的自适应分层分解
Adaptive Hierarchical Decomposition of Large Deep Networks
论文作者
论文摘要
深度学习最近证明了它可以与人脑相抗衡的视觉对象识别能力。随着数据集越来越大,一个自然的问题是,是否可以扩展现有的深度学习体系结构,以处理典型人认为可以察觉到的50+K类。大多数深度学习体系结构都集中在分裂的各种类别上,同时忽略了它们之间的相似之处。本文介绍了一个框架,该框架自动分析和配置了一个较小的深网系列,以替代一个奇异的,较大的网络。班级相似性指导家庭从课程到精细分类器的创建,这些分类器比单个大型分类器更有效地解决了分类问题。所得较小的网络具有高度可扩展,平行和更实用的训练,并实现了更高的分类精度。本文还提出了一种使用整体和子分类混淆矩阵的链接统计信息自适应选择分类族的配置的方法。根据类的数量和问题的复杂性,选择了深度学习模型并确定复杂性。网络类,层和体系结构配置进行了许多实验,可以验证我们的结果。
Deep learning has recently demonstrated its ability to rival the human brain for visual object recognition. As datasets get larger, a natural question to ask is if existing deep learning architectures can be extended to handle the 50+K classes thought to be perceptible by a typical human. Most deep learning architectures concentrate on splitting diverse categories, while ignoring the similarities amongst them. This paper introduces a framework that automatically analyzes and configures a family of smaller deep networks as a replacement to a singular, larger network. Class similarities guide the creation of a family from course to fine classifiers which solve categorical problems more effectively than a single large classifier. The resulting smaller networks are highly scalable, parallel and more practical to train, and achieve higher classification accuracy. This paper also proposes a method to adaptively select the configuration of the hierarchical family of classifiers using linkage statistics from overall and sub-classification confusion matrices. Depending on the number of classes and the complexity of the problem, a deep learning model is selected and the complexity is determined. Numerous experiments on network classes, layers, and architecture configurations validate our results.