论文标题

预测您已经知道的帮助:可证明的自我监督学习

Predicting What You Already Know Helps: Provable Self-Supervised Learning

论文作者

Lee, Jason D., Lei, Qi, Saunshi, Nikunj, Zhuo, Jiacheng

论文摘要

自我监督的表示学习解决了辅助预测任务(称为借口任务),而无需标记的数据才能学习有用的语义表示。这些借口任务仅使用输入功能创建,例如预测缺失的图像补丁,从上下文中恢复图像的颜色通道或预测文本中缺少单词;然而,预测此\ textit {已知}信息有助于学习有效的下游预测任务。我们提出了一种机制,利用了某些{\ em重建}借口任务之间的统计连接,以保证学习良好的表示。正式地,我们量化了借口任务的组成部分(标签和潜在变量的条件)之间的近似独立性使我们能够学习可以通过在学习表示的顶部训练线性层来解决下游任务的表示。我们证明,即使对于复杂的地面真相功能类别,线性层即使会产生小近似误差,并将大大降低标记的样品复杂性。接下来,我们显示了对方法的简单修改,导致非线性CCA(类似于流行的Simsiam算法),并显示了非线性CCA的相似保证。

Self-supervised representation learning solves auxiliary prediction tasks (known as pretext tasks) without requiring labeled data to learn useful semantic representations. These pretext tasks are created solely using the input features, such as predicting a missing image patch, recovering the color channels of an image from context, or predicting missing words in text; yet predicting this \textit{known} information helps in learning representations effective for downstream prediction tasks. We posit a mechanism exploiting the statistical connections between certain {\em reconstruction-based} pretext tasks that guarantee to learn a good representation. Formally, we quantify how the approximate independence between the components of the pretext task (conditional on the label and latent variables) allows us to learn representations that can solve the downstream task by just training a linear layer on top of the learned representation. We prove the linear layer yields small approximation error even for complex ground truth function class and will drastically reduce labeled sample complexity. Next, we show a simple modification of our method leads to nonlinear CCA, analogous to the popular SimSiam algorithm, and show similar guarantees for nonlinear CCA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源