论文标题
多晶材料的电力机械响应:通过虚拟元素方法计算均质化
Electro-magneto-mechanically response of polycrystalline materials: Computational Homogenization via the Virtual Element Method
论文作者
论文摘要
这项工作介绍了一项关于通过虚拟元素方法(VEM)的电力机械耦合问题计算均质化的研究。 Ve-Accleactes具有与各向异性晶粒的异质多晶微观结构的物理特性均质化的巨大潜力。与有限元(Fe)网格相比,可以利用元素形状的灵活性来创建具有明显较低的自由度的VE-MESH,同时保持高精度。文献中有证据表明VE-Acclacees胜过FEM,但仅解决纯机电问题(即弹性特性)和横向各向异性材料。这项工作的目的是双重的。一方面,该研究比较了基于VE和Fe的数值均质化方案,用于用于不同晶体晶格结构和弹性各向异性程度的电力耦合问题。在所有被考虑的材料中,VE-Asprocks优于相同数量的节点的Fe诉求。另一方面,研究了由电力机械和机械晶粒组成的混合微观结构,从而导致电力机械耦合的微结构。同样,VEM提供了更准确的解决方案策略。
This work presents a study on the computational homogenization of electro-magneto-mechanically coupled problems through the Virtual Element Method (VEM). VE-approaches have great potential for the homogenization of the physical properties of heterogeneous polycrystalline microstructures with anisotropic grains. The flexibility in element shapes can be exploited for creating VE-mesh with a significant lower number of degrees of freedom if compared to finite element (FE) meshes, while maintaining a high accuracy. Evidence that VE-approaches outperform FEM are available in the literature, but only addressing purely-mechanic problems (i.e. elastic properties) and transversely anisotropic materials. The aim of this work is twofold. On one hand, the study compares VE-and FE-based numerical homogenization schemes for electro-mechanically coupled problems for different crystal lattice structures and degrees of elastic anisotropy. Within all considered materials, the VE-approach outperforms the FE-approach for the same number of nodes. On the other hand a hybrid microstructure made up by both electro-mechanical and magneto-mechanical grains is investigated resulting in a electro-magneto-mechanically coupled microstructure. Again, VEM provides a more accurate solution strategy.