论文标题
在线VNF链接和预测计划:最佳和权衡
Online VNF Chaining and Predictive Scheduling: Optimality and Trade-offs
论文作者
论文摘要
对于NFV系统,关键设计空间包括用于网络请求的功能链条和服务器的资源计划。该问题具有挑战性,因为NFV系统通常需要多个(通常是冲突的)设计目标以及有限的信息实时决策的计算效率。此外,对NFV系统的预测计划的好处仍然没有探索。在本文中,我们提出了POSCAR,这是一种有效的预测性和在线服务链条和资源调度计划,该计划在具有队列稳定性保证的各种系统指标之间实现了可调的权衡。通过仔细选择系统建模的粒度,我们可以更好地了解设计空间中的权衡。通过非平凡的转换,我们将复杂的优化问题分解为一系列在线子问题,仅使用有限的信息来实现最佳性。通过采用随机负载平衡技术,我们提出了三种POSCAR的变体,以减少决策的开销。理论分析和仿真表明,POSCAR及其变体仅需要未来信息的温和价值,以实现近低要求响应时间的近乎最佳系统成本。
For NFV systems, the key design space includes the function chaining for network requests and resource scheduling for servers. The problem is challenging since NFV systems usually require multiple (often conflicting) design objectives and the computational efficiency of real-time decision making with limited information. Furthermore, the benefits of predictive scheduling to NFV systems still remain unexplored. In this paper, we propose POSCARS, an efficient predictive and online service chaining and resource scheduling scheme that achieves tunable trade-offs among various system metrics with queue stability guarantee. Through a careful choice of granularity in system modeling, we acquire a better understanding of the trade-offs in our design space. By a non-trivial transformation, we decouple the complex optimization problem into a series of online sub-problems to achieve the optimality with only limited information. By employing randomized load balancing techniques, we propose three variants of POSCARS to reduce the overheads of decision making. Theoretical analysis and simulations show that POSCARS and its variants require only mild-value of future information to achieve near-optimal system cost with an ultra-low request response time.