论文标题

学习聚合物流与内存的本构之间关系

Learning the constitutive relation of polymeric flows with memory

论文作者

Seryo, Naoki, Sato, Takeshi, Molina, John J., Taniguchi, Takashi

论文摘要

我们制定了一种学习策略,以推断出与记忆的聚合物流动压力的构成关系。我们没有对本构关系的功能形式做出任何假设,除了它们应以差异形式表达作为局部应力和应变率张量的函数。特别是,我们使用高斯过程回归来推断由小型(固定应变率)显微镜聚合物模拟产生的应力轨迹的本构关系。为简单起见,钩形哑铃表示被用作微观模型,但是该方法本身可以推广以纳入更现实的描述。然后,学习的本构之间的关系用于执行宏观流动模拟,使我们能够以说明微观聚合物动力学的方式更新流体中的应力分布。使用学识渊博的构成关系的结果与完整的多尺度模拟非常吻合,该模拟直接将微/宏观/宏观的自由度以及由Maxwell构成关系提供的确切分析解决方案。我们能够完全捕获流动的历史依赖性以及流体中的弹性效应。我们期望提出的学习/仿真方法不仅用于研究纠缠聚合物流的动力学,而且还用于其他软物质系统的复杂动力学,这些软件系统具有相似的长度和时间标准的层次结构。

We develop a learning strategy to infer the constitutive relation for the stress of polymeric flows with memory. We make no assumptions regarding the functional form of the constitutive relations, except that they should be expressible in differential form as a function of the local stress- and strain-rate tensors. In particular, we use a Gaussian Process regression to infer the constitutive relations from stress trajectories generated from small-scale (fixed strain-rate) microscopic polymer simulations. For simplicity, a Hookean dumbbell representation is used as a microscopic model, but the method itself can be generalized to incorporate more realistic descriptions. The learned constitutive relation is then used to perform macroscopic flow simulations, allowing us to update the stress distribution in the fluid in a manner that accounts for the microscopic polymer dynamics. The results using the learned constitutive relation are in excellent agreement with full Multi-Scale Simulations, which directly couple micro/macro degrees of freedom, as well as the exact analytical solution given by the Maxwell constitutive relation. We are able to fully capture the history dependence of the flow, as well as the elastic effects in the fluid. We expect the proposed learning/simulation approach to be used not only to study the dynamics of entangled polymer flows, but also for the complex dynamics of other Soft Matter systems, which possess a similar hierarchy of length- and time-scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源