论文标题
使用有限音量方法在一般非结构化网格上使用有限的体积方法对非等温粘弹性流的数值模拟
Numerical simulation of non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume method on general unstructured meshes
论文作者
论文摘要
在这项数值研究中,提出了一种原始的模拟非等温粘弹性流体流量的原始方法。通过在一般非结构化网格上使用有限体积框架中的根构象方法来确保在广泛的魏森伯格数字上进行稳定计算。扩展了数值稳定框架,以考虑OldRoyd-B型粘弹性流体中的热 - 流动特性。粘弹性流体的温度依赖性是用时间温度叠加原理建模的。根据流量特征,可以选择Arrhenius和WLF偏移因子。内部能量平衡考虑了能量和熵弹性。分区是通过恒定的拆分因子来实现的。得出平面通道流中平衡方程的分析解决方案,以验证主场变量的结果并估计数值误差。研究了轴对称4:1收缩中基于聚异生的聚合物溶液的更复杂的进入流,并将其与文献的实验数据进行了比较。我们证明了该方法在高魏森贝格数字的实验相关范围内的稳定性。发现在不同强加的壁温以及魏森伯格数量下的结果与实验数据非常吻合。此外,针对实验设置详细研究了能量和熵弹性之间的分裂。
In this numerical study, an original approach to simulate non-isothermal viscoelastic fluid flows at high Weissenberg numbers is presented. Stable computations over a wide range of Weissenberg numbers are assured by using the root conformation approach in a finite volume framework on general unstructured meshes. The numerical stabilization framework is extended to consider thermo-rheological properties in Oldroyd-B type viscoelastic fluids. The temperature dependence of the viscoelastic fluid is modeled with the time-temperature superposition principle. Both Arrhenius and WLF shift factors can be chosen, depending on the flow characteristics. The internal energy balance takes into account both energy and entropy elasticity. Partitioning is achieved by a constant split factor. An analytical solution of the balance equations in planar channel flow is derived to verify the results of the main field variables and to estimate the numerical error. The more complex entry flow of a polyisobutylene-based polymer solution in an axisymmetric 4:1 contraction is studied and compared to experimental data from the literature. We demonstrate the stability of the method in the experimentally relevant range of high Weissenberg numbers. The results at different imposed wall temperatures, as well as Weissenberg numbers, are found to be in good agreement with experimental data. Furthermore, the division between energy and entropy elasticity is investigated in detail with regard to the experimental setup.