论文标题

定位器:酒店价格提取的智能系统

PriceAggregator: An Intelligent System for Hotel Price Fetching

论文作者

Zhang, Jiangwei, Zhang, Li, Raveendran, Vigneshwaran, Ben-Zuk, Ziv, Lu, Leonard

论文摘要

本文介绍了酒店价格汇总系统 - Piceaggregator,位于全球酒店,度假租赁,航班和机场转会的全球在线旅行社Agoda。 Agoda汇总了非直接供应商的酒店房间,以确保Agoda的客户始终选择酒店,房间类型和套餐的最广泛选择。截至今天,Agoda汇总了数百万的酒店。主要的挑战是,每个供应商仅允许Agoda以每秒的查询数量(QP)的数量来获取酒店价格。由于Agoda的用户搜索流量的含量庞大,因此有限的QPS不足以涵盖所有用户搜索。不可避免地,必须忽略许多用户搜索。因此,预订丢失了。为了克服挑战,我们建立了Priceaggregator。 Priceaggregator智能地确定何时,如何以及如何发送给供应商以获取价格。在本文中,我们不仅证明了Priceaggregator在理论上是最佳的,而且还证明了Priceaggregator在实践中的表现良好。定位器已部署在Agoda中。广泛的在线A/B实验表明,Priceaggregator大大增加了Agoda的预订。

This paper describes the hotel price aggregation system - PriceAggregator, deployed at Agoda, a global online travel agency for hotels, vacation rentals, flights and airport transfer. Agoda aggregates non-direct suppliers' hotel rooms to ensure that Agoda's customers always have the widest selection of hotels, room types and packages. As of today, Agoda aggregates millions of hotels. The major challenge is that each supplier only allows Agoda to fetch for the hotel price with a limited amount of Queries Per Second (QPS). Due to the sheer volume of Agoda's user search traffic, this limited amount of QPS is never enough to cover all user searches. Inevitably, many user searches have to be ignored. Hence, booking lost. To overcome the challenge, we built PriceAggregator. PriceAggregator intelligently determines when, how and what to send to the suppliers to fetch for price. In this paper, we not only prove PriceAggregator is optimal theoretically but also demonstrate that PriceAggregator performs well in practice. PriceAggregator has been deployed in Agoda. Extensive online A/B experimentation have shown that PriceAggregator increases Agoda's bookings significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源