论文标题

我可以倒吗?机器人通过物理模拟想象以前看不见的对象的开放性可容纳性能

Can I Pour into It? Robot Imagining Open Containability Affordance of Previously Unseen Objects via Physical Simulations

论文作者

Wu, Hongtao, Chirikjian, Gregory S.

论文摘要

开放的容器,即没有覆盖的容器,是人类生活中重要且无处不在的物体类别。在这封信中,我们为机器人提出了一种新颖的方法,可以通过物理模拟“想象”以前看不见的对象的开放性可容纳性。我们在UR5操纵器上实施了想象方法。机器人用RGB-D摄像头自动扫描对象。扫描的3D模型用于开放可容纳性想象力,该想象力通过将掉落到对象上的滴定粒子进行物理模拟并计算其中保留了多少个颗粒来量化开放性的可容纳性能。此量化用于开放式和非开放式二进制分类(以下称为开放容器分类)。如果对象被归类为一个开放容器,则机器人进一步想象将物体倒入物体,再次使用物理模拟,以获得真正的机器人自动倒入的倾倒位置和方向。我们在开放容器分类和自主倒入数据集上的方法上评估了我们的方法,该数据集包含130个以前看不见的对象,具有57个对象类别。尽管我们提出的方法仅使用11个对象进行仿真校准(训练),但其开放容器分类与人类判断良好。此外,我们的方法赋予机器人能够以很高的成功率自主倒入数据集中的55个容器。我们还与深度学习方法进行了比较。结果表明,我们的方法与开放容器分类的深度学习方法相同,并且在自动倾泻上的表现优于它。此外,我们的方法是完全可以解释的。

Open containers, i.e., containers without covers, are an important and ubiquitous class of objects in human life. In this letter, we propose a novel method for robots to "imagine" the open containability affordance of a previously unseen object via physical simulations. We implement our imagination method on a UR5 manipulator. The robot autonomously scans the object with an RGB-D camera. The scanned 3D model is used for open containability imagination which quantifies the open containability affordance by physically simulating dropping particles onto the object and counting how many particles are retained in it. This quantification is used for open-container vs. non-open-container binary classification (hereafter referred to as open container classification). If the object is classified as an open container, the robot further imagines pouring into the object, again using physical simulations, to obtain the pouring position and orientation for real robot autonomous pouring. We evaluate our method on open container classification and autonomous pouring of granular material on a dataset containing 130 previously unseen objects with 57 object categories. Although our proposed method uses only 11 objects for simulation calibration (training), its open container classification aligns well with human judgements. In addition, our method endows the robot with the capability to autonomously pour into the 55 containers in the dataset with a very high success rate. We also compare to a deep learning method. Results show that our method achieves the same performance as the deep learning method on open container classification and outperforms it on autonomous pouring. Moreover, our method is fully explainable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源