论文标题
Crowdea:人群的多视图创意优先级
CrowDEA: Multi-view Idea Prioritization with Crowds
论文作者
论文摘要
鉴于从人群中收集的关于一个开放式问题的想法,我们如何组织和优先级,以根据人群评估者的喜好比较来确定优先的问题?由于有不同的潜在标准以实现一个想法的价值,因此可以将多种想法视为“最好的”。此外,评估者可以具有不同的偏好标准,其比较结果通常不同意。 在本文中,我们提出了一种分析方法,用于获取一部分思想,即我们称之为边界的想法,这是至少一个潜在评估标准的最好的思想。我们提出了一种称为Crowdea的方法,该方法估算了多标准偏好空间中思想的嵌入,每个想法的最佳观点以及每个评估者的偏好标准,以获取一组边界思想。使用包含许多想法或设计的实际数据集的实验结果表明,所提出的方法可以从多个观点有效地优先考虑思想,从而检测到边境的想法。拟议方法学到的思想的嵌入提供了一种可视化,以促进对边境思想的观察。此外,提出的方法从更广泛的观点中优先考虑思想,而基准倾向于使用相同的观点。它还可以处理各种观点,并在只有有限数量的评估者或标签的情况下优先考虑想法。
Given a set of ideas collected from crowds with regard to an open-ended question, how can we organize and prioritize them in order to determine the preferred ones based on preference comparisons by crowd evaluators? As there are diverse latent criteria for the value of an idea, multiple ideas can be considered as "the best". In addition, evaluators can have different preference criteria, and their comparison results often disagree. In this paper, we propose an analysis method for obtaining a subset of ideas, which we call frontier ideas, that are the best in terms of at least one latent evaluation criterion. We propose an approach, called CrowDEA, which estimates the embeddings of the ideas in the multiple-criteria preference space, the best viewpoint for each idea, and preference criterion for each evaluator, to obtain a set of frontier ideas. Experimental results using real datasets containing numerous ideas or designs demonstrate that the proposed approach can effectively prioritize ideas from multiple viewpoints, thereby detecting frontier ideas. The embeddings of ideas learned by the proposed approach provide a visualization that facilitates observation of the frontier ideas. In addition, the proposed approach prioritizes ideas from a wider variety of viewpoints, whereas the baselines tend to use to the same viewpoints; it can also handle various viewpoints and prioritize ideas in situations where only a limited number of evaluators or labels are available.