论文标题

带有主动学习的跨模型图像注释平台

Cross-Model Image Annotation Platform with Active Learning

论文作者

Lynnette, Ng Hui Xian, Hock, Henry Ng Siong, Yen, Nguwi Yok

论文摘要

近几十年来,我们已经看到了机器学习方面的巨大跨越进步。机器可学习性的核心思想在于构建学习算法的学习算法。近年来,公开获得更多数据的可用性也加速了AI的增长。在计算机视觉的领域,图像数据的质量源于图像注释的准确性。标记大量图像数据是一项艰巨而繁琐的任务。这项工作为对象注释提供了端到端管道工具,旨在启用快速图像标签。我们已经开发了一个模块化图像注释平台,该平台无缝地结合了辅助图像注释(注释辅助),主动学习和模型培训和评估。我们的方法比当前的图像注释工具提供了许多优势。首先,注释帮助利用参考层次结构和参考图像来定位图像中的对象,从而减少了对整个对象的注释的需求。其次,可以使用多边形点来注释图像,从而允许对任何形状的对象进行注释。第三,它在几个图像模型中也可以互操作,并且该工具为对象模型训练和评估提供了一系列预训练模型的接口。我们已经测试了模型,并嵌入了几个基准测试深度学习模型。达到的最高准确度是74%。

We have seen significant leapfrog advancement in machine learning in recent decades. The central idea of machine learnability lies on constructing learning algorithms that learn from good data. The availability of more data being made publicly available also accelerates the growth of AI in recent years. In the domain of computer vision, the quality of image data arises from the accuracy of image annotation. Labeling large volume of image data is a daunting and tedious task. This work presents an End-to-End pipeline tool for object annotation and recognition aims at enabling quick image labeling. We have developed a modular image annotation platform which seamlessly incorporates assisted image annotation (annotation assistance), active learning and model training and evaluation. Our approach provides a number of advantages over current image annotation tools. Firstly, the annotation assistance utilizes reference hierarchy and reference images to locate the objects in the images, thus reducing the need for annotating the whole object. Secondly, images can be annotated using polygon points allowing for objects of any shape to be annotated. Thirdly, it is also interoperable across several image models, and the tool provides an interface for object model training and evaluation across a series of pre-trained models. We have tested the model and embeds several benchmarking deep learning models. The highest accuracy achieved is 74%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源