论文标题

局部放松中的层次结构复发

The hierarchy recurrences in local relaxation

论文作者

Li, Sheng-Wen, Sun, C. P.

论文摘要

在经历统一演变的封闭的多体系统内,整个系统的一个小分区表现出局部放松。如果整个系统的总自由度是一个较大但有限的数字,那么在一定时间后,这种局部放松将会遇到复发,即,局部系统的动力学在有序的振荡衰减过程后突然随机出现。在本文中发现了$ n $两级系统(TLSS)的集合,其中一个TLS的局部放松在这种复发之后隐藏在随机性中的层次结构结构:类似的复发以一种定期的方式出现,后来的复发带来了比前一个更强的随机性。我们获得的分析结果和数值结果都很好地解释了这样的层次结构复发:由于浴室的有限尺寸效应[其余$(N-1)$ TLSS],本地TLS(作为开放系统)的种群会扩散并定期恢复。我们还发现,总相关熵总结了所有$ n $ tlss的熵,大约显示出单调的增加。相反,每个单个TLS的熵不时增加和减小,整个$ n $体系统的熵在单一演变期间保持恒定。

Inside a closed many-body system undergoing the unitary evolution, a small partition of the whole system exhibits a local relaxation. If the total degrees of freedom of the whole system is a large but finite number, such a local relaxation would come across a recurrence after a certain time, namely, the dynamics of the local system suddenly appear random after a well-ordered oscillatory decay process. It is found in this paper, for a collection of $N$ two-level systems (TLSs), the local relaxation of one TLS within has a hierarchy structure hiding in the randomness after such a recurrence: similar recurrences appear in a periodical way, and the later recurrence brings in stronger randomness than the previous one. Both analytical and numerical results that we obtained well explains such hierarchy recurrences: the population of the local TLS (as an open system) diffuses out and regathers back periodically due the finite-size effect of the bath [the remaining $(N-1)$ TLSs]. We also find that the total correlation entropy, which sums up the entropy of all the $N$ TLSs, approximately exhibit a monotonic increase; in contrast, the entropy of each single TLS increases and decreases from time to time, and the entropy of the whole $N$-body system keeps constant during the unitary evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源