论文标题

属的分类 - $ 1 $ HOLOMORTHIC LEFSCHETZ铅笔

Classification of genus-$1$ holomorphic Lefschetz pencils

论文作者

Hamada, Noriyuki, Hayano, Kenta

论文摘要

在本文中,我们将相对最小的属分类为$ 1 $ holomorphic lefschetz铅笔,以使同构平滑。我们首先表明,这种铅笔是同构的,这是$ \ mathbb {p}^1 \ times \ times \ mathbb {p}^1 $ bi-degree $(2,2)$的铅笔,或者在不包含一份pord的pord conder的pord comped and pulber的$ 3 $ 3 $ 3 $ $ 3 $ $ 3 $ 3 $的$ \ Mathbb {p}^2 $ 3 $上。 (请注意,一个人可以轻松地对属 - $ 1 $ lefschetz铅笔进行分类。我们还表明,由korkmaz-ozbagci(带有九个基点)和田中(有8个基点)构建的属属 - $ 1 $ lefschetz铅笔在$ \ mathbb {p}^2 $ and $ \ mathbb {p} p} p} pp {p}^1 $ \ bb {p}^1 pp^1 $ {p} pp^1 $ {Pens^1 $ {p} pp^1 $ {pp^1 $ {全态。

In this paper, we classify relatively minimal genus-$1$ holomorphic Lefschetz pencils up to smooth isomorphism. We first show that such a pencil is isomorphic to either the pencil on $\mathbb{P}^1\times \mathbb{P}^1$ of bi-degree $(2,2)$ or a blow-up of the pencil on $\mathbb{P}^2$ of degree $3$, provided that no fiber of a pencil contains an embedded sphere. (Note that one can easily classify genus-$1$ Lefschetz pencils with an embedded sphere in a fiber.) We further determine the monodromy factorizations of these pencils and show that the isomorphism class of a blow-up of the pencil on $\mathbb{P}^2$ of degree $3$ does not depend on the choice of blown-up base points. We also show that the genus-$1$ Lefschetz pencils constructed by Korkmaz-Ozbagci (with nine base points) and Tanaka (with eight base points) are respectively isomorphic to the pencils on $\mathbb{P}^2$ and $\mathbb{P}^1\times \mathbb{P}^1$ above, in particular these are both holomorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源