论文标题
calabi-yau glsms的球体分区函数
Sphere partition function of Calabi-Yau GLSMs
论文作者
论文摘要
Calabi-Yau测量线性Sigma模型(GLSMS)的球体分区函数已被证明可以计算Calabi-Yau的Kaehler Moduli空间的确切kaehler势。我们提出了在Calabi-yau Glsms的杂化阶段评估的球形分区函数的通用表达,该函数是Landau-Ginzburg Orbifolds在某些基本歧管上的纤维纤维。特殊案例包括在复曲面环境空间和兰道木堡Orbifolds中的Calabi-Yau完整交集。输入该表达式的关键成分是Givental的I/J-功能,伽马等级以及与混合模型相关的更多数据。我们测试了一个和两参数Abelian GLSM的建议,并在可能的情况下与镜像对称性和FJRW理论的已知结果建立联系。
The sphere partition function of Calabi-Yau gauged linear sigma models (GLSMs) has been shown to compute the exact Kaehler potential of the Kaehler moduli space of a Calabi-Yau. We propose a universal expression for the sphere partition function evaluated in hybrid phases of Calabi-Yau GLSMs that are fibrations of Landau-Ginzburg orbifolds over some base manifold. Special cases include Calabi-Yau complete intersections in toric ambient spaces and Landau-Ginzburg orbifolds. The key ingredients that enter the expression are Givental's I/J-functions, the Gamma class and further data associated to the hybrid model. We test the proposal for one- and two-parameter abelian GLSMs, making connections, where possible, to known results from mirror symmetry and FJRW theory.