论文标题
自发对称性破裂:衍生几何形状的视图
Spontaneous symmetry breaking: a view from derived geometry
论文作者
论文摘要
我们通过Batalin-Vilkovisky形式主义在派生的几何形状框架内检查了田间理论中的对称性破坏。我们的重点是金茨堡 - 兰道和杨米尔斯·希格斯理论的标准例子,主要是解释性的。衍生的几何形状的丰富,精致的语言可典雅地捕捉了物理故事,从而允许口号尖锐的格式(例如,对于希格斯机制,不稳定的幽灵吃了戈德斯通模式)。在BV形式主义中重写这些结果,作为一个不错的回报,对自发损坏的量规理论的“ hooft的量规条件”的重新构成,其行为在$ξ\ to \ infty $限制中。
We examine symmetry breaking in field theory within the framework of derived geometry, as applied to field theory via the Batalin-Vilkovisky formalism. Our emphasis is on the standard examples of Ginzburg-Landau and Yang-Mills-Higgs theories and is primarily interpretive. The rich, sophisticated language of derived geometry captures the physical story elegantly, allowing for sharp formulations of slogans (e.g., for the Higgs mechanism, that the unstable ghosts eat the Goldstone modes). Rewriting these results in the BV formalism provides, as one nice payoff, a reformulation of 't Hooft's family of gauge-fixing conditions for spontaneously broken gauge theory that behaves well in the $ξ\to \infty$ limit.