论文标题

SU(N)晶格Yang-Mills量规理论的双磁带循环

Double-winding Wilson loops in SU(N) lattice Yang-Mills gauge theory

论文作者

Kato, Seikou, Shibata, Akihiro, Kondo, Kei-Ichi

论文摘要

我们通过使用强耦合扩展和数值模拟来研究$ SU(n)$ lattice yang-mills仪表理论中的双连环循环。首先,我们研究了``Coplanar''双方循环循环的平均值取决于颜色$ n $的数量。的确,我们发现Coplanar双赢的Wilson Loop平均遵守$ n = 3 $的小说``Max-Areas law'''和$ n \ geq 4 $的分区法律,尽管我们重新确认$ n = 2 $的差额法律。其次,我们检查了一个``移动''双赢的威尔逊循环,其中两个组成循环沿横向互相移动。我们通过更改横向方向的距离来评估其平均值,我们发现长距离行为不取决于颜色$ n $的数量,而短距离行为在很大程度上取决于$ n $。

We study double-winding Wilson loops in $SU(N)$ lattice Yang-Mills gauge theory by using both strong coupling expansions and numerical simulations. First, we examine how the area law falloff of a ``coplanar'' double-winding Wilson loop average depends on the number of color $N$. Indeed, we find that a coplanar double-winding Wilson loop average obeys a novel ``max-of-areas law'' for $N=3$ and the sum-of-areas law for $N\geq 4$, although we reconfirm the difference-of-areas law for $N=2$. Second, we examine a ``shifted'' double-winding Wilson loop, where the two constituent loops are displaced from one another in a transverse direction. We evaluate its average by changing the distance of a transverse direction and we find that the long distance behavior does not depend on the number of color $N$, while the short distance behavior depends strongly on $N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源