论文标题

图形中双方独立数的caro-wei上的注释

A note on a Caro-Wei bound for the bipartite independence number in graphs

论文作者

Kogan, Shimon

论文摘要

两部分图$ g $中的大小$ t $的双孔是$ g $的$ k_ {t,t,t} $的副本。鉴于$ n \ times n $ a $ a $ a $ g $,让$β(g)$是最大的$ k $,$ g $具有$ k $的双孔。我们证明\ [β(g)\ geq \ left \ lfloor \ frac {1} {2} {2} \ cdot \ sum_ {v \ in V(g)} \ frac {1} {1} {d(v)+1} +1}+right \ right \ rfloor。 \]此外,我们证明了上述结果的以下概括。考虑到$ n \ times n $二键图$ g $,让$β_d(g)$是$ g $具有$ k \ times k $ $ d $ d $ d $ -degenerate子图的最大$ k $。我们证明\ [β_d(g)\ geq \ left \ lfloor \ frac {1} {2} {2} \ cdot \ cdot \ sum_ {v \ in v(g)} \ min \ min \ left(1,\ frac {d+1}} \]请注意,$β_0(g)=β(g)$。

A bi-hole of size $t$ in a bipartite graph $G$ is a copy of $K_{t,t}$ in the bipartite complement of $G$. Given an $n \times n$ bipartite graph $G$, let $β(G)$ be the largest $k$ for which $G$ has a bi-hole of size $k$. We prove that \[ β(G) \geq \left \lfloor \frac{1}{2} \cdot \sum_{v \in V(G)} \frac{1}{d(v)+1} \right \rfloor. \] Furthermore, we prove the following generalization of the result above. Given an $n \times n$ bipartite graph $G$, Let $β_d(G)$ be the largest $k$ for which $G$ has a $k \times k$ $d$-degenerate subgraph. We prove that \[ β_d(G) \geq \left \lfloor \frac{1}{2} \cdot \sum_{v \in V(G)} \min\left(1,\frac{d+1}{d(v)+1}\right) \right \rfloor. \] Notice that $β_0(G) = β(G)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源