论文标题

神经轻型传输可重新保存和查看合成

Neural Light Transport for Relighting and View Synthesis

论文作者

Zhang, Xiuming, Fanello, Sean, Tsai, Yun-Ta, Sun, Tiancheng, Xue, Tianfan, Pandey, Rohit, Orts-Escolano, Sergio, Davidson, Philip, Rhemann, Christoph, Debevec, Paul, Barron, Jonathan T., Ramamoorthi, Ravi, Freeman, William T.

论文摘要

场景的光运输(LT)描述了它在不同的照明和观看方向下如何出现,并且对场景LT的完整了解可以使在任意照明下的新观点综合。在本文中,我们专注于基于图像的LT采集,主要是针对光阶段设置中的人体。我们提出了一种半参数方法来学习LT的神经表示,该方法嵌入了已知几何特性的纹理地图集的空间中,并将所有非扩散和全局LT建模,因为残留物添加到物理精确的扩散碱基呈现中。特别是,我们展示了如何从所需的角度从所需的照明条件下在所需的照明条件下合成相同场景的新图像的先前看到的观察结果。该策略使网络能够学习复杂的材料效应(例如地下散射)和全局照明,同时保证了弥漫性LT的身体正确性(例如硬阴影)。借助该学到的LT,可以使用方向光或HDRI映射在光真上面重新确定场景,并使用一组稀疏的,以前看到的观察结果合成具有视图依赖性效果的新型视图,或者同时进行统一的框架。定性和定量实验表明,我们的神经LT(NLT)的表现要优于确切解决方案,用于重新确定和查看合成,而无需单独的治疗方法,而对于先前工作所需的这两个问题。

The light transport (LT) of a scene describes how it appears under different lighting and viewing directions, and complete knowledge of a scene's LT enables the synthesis of novel views under arbitrary lighting. In this paper, we focus on image-based LT acquisition, primarily for human bodies within a light stage setup. We propose a semi-parametric approach to learn a neural representation of LT that is embedded in the space of a texture atlas of known geometric properties, and model all non-diffuse and global LT as residuals added to a physically-accurate diffuse base rendering. In particular, we show how to fuse previously seen observations of illuminants and views to synthesize a new image of the same scene under a desired lighting condition from a chosen viewpoint. This strategy allows the network to learn complex material effects (such as subsurface scattering) and global illumination, while guaranteeing the physical correctness of the diffuse LT (such as hard shadows). With this learned LT, one can relight the scene photorealistically with a directional light or an HDRI map, synthesize novel views with view-dependent effects, or do both simultaneously, all in a unified framework using a set of sparse, previously seen observations. Qualitative and quantitative experiments demonstrate that our neural LT (NLT) outperforms state-of-the-art solutions for relighting and view synthesis, without separate treatment for both problems that prior work requires.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源