论文标题
单位间隔的迭代率的亚稳定性速率
Rates of metastability for iterations on the unit interval
论文作者
论文摘要
我们使用证明挖掘的技术来提取可计算和统一的亚稳定性速率(从道意义上讲),以迭代单位间隔的连续功能,首先(之后(遵循早期的加斯帕尔(Gaspar)工作),由于Franks,Marzec,Marzec,Rhoades和Hillam以及由于Borwein和Borwein和Borwein的作用而导致的参数,因此是由Franks,Marzec,Rhoades和Hillam引起的。
We use techniques of proof mining to extract computable and uniform rates of metastability (in the sense of Tao) for iterations of continuous functions on the unit interval, firstly (following earlier work of Gaspar) out of convergence proofs due to Franks, Marzec, Rhoades and Hillam and then out of an argument due to Borwein and Borwein that pertains only to Lipschitz functions.