论文标题
仿射kac-moody代数的主要重量的晶格
Lattice of dominant weights of affine Kac-Moody algebras
论文作者
论文摘要
kac-moody代数中的cartan次级总代理的双空间的部分顺序由以下规则定义,即两个元素是相关的,并且只有当它们的差异是非阴性或非阳性的简单根部线性组合时。在本文中,我们研究了由仿射Kac-Moody代数中的主要权重形成的子店。我们对此Poset中的覆盖关系进行了更明确的描述。我们还研究了A型的无臂仿射KAC-MOODY代数的主要重量的基本细胞的结构。
The dual space of the Cartan subalgebra in a Kac-Moody algebra has a partial ordering defined by the rule that two elements are related if and only if their difference is a non-negative or non-positive integer linear combination of simple roots. In this paper, we study the subposet formed by dominant weights in affine Kac-Moody algebras. We give a more explicit description of the covering relations in this poset. We also study the structure of basic cells in this poset of dominant weights for untwisted affine Kac-Moody algebras of type A.