论文标题

估计对称稳定定律的特征函数和稳定性参数的对数

Estimating the logarithm of characteristic function and stability parameter for symmetric stable laws

论文作者

Krutto, Annika, Lember, Jüri

论文摘要

令$ x_1,\ ldots,x_n $为i.i.d.来自对称稳定分布的样本稳定性参数$α$和比例参数$γ$。令$φ_n$为经验特征函数。我们证明了统一的大偏差不平等:给定精确性$ε> 0 $和概率$ p \ in(0,1)$,存在通用(取决于$ε$和$ p $,但不能取决于$α$和$α$和$γ$)常量$ \ bar {r} \ bar {r}} | r(u) - \ hat {r}(u)| \geqε\ big)\ leq p,$$,其中$ r(u)=(uγ)^α$和$ \ hat {r} {r}(r}(u)作为结果的应用,我们展示了如何将其用于估计未知稳定性参数$α$中。

Let $X_1,\ldots,X_n$ be an i.i.d. sample from symmetric stable distribution with stability parameter $α$ and scale parameter $γ$. Let $φ_n$ be the empirical characteristic function. We prove an uniform large deviation inequality: given preciseness $ε>0$ and probability $p\in (0,1)$, there exists universal (depending on $ε$ and $p$ but not depending on $α$ and $γ$) constant $\bar{r}>0$ so that $$P\big(\sup_{u>0:r(u)\leq \bar{r}}|r(u)-\hat{r}(u)|\geq ε\big)\leq p,$$ where $r(u)=(uγ)^α$ and $\hat{r}(u)=-\ln|φ_n(u)|$. As an applications of the result, we show how it can be used in estimation unknown stability parameter $α$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源