论文标题

使用对称驱动的结构搜索在高压下预测氯和氟晶体结构,并具有几何约束

Prediction of Chlorine and Fluorine Crystal Structures at High Pressure Using Symmetry Driven Structure Search with Geometric Constraints

论文作者

Olson, Mark A., Bhatia, Shefali, Larson, Paul, Militzer, Burkhard

论文摘要

氟和氯的高压特性尚不清楚,因为这两者都是高反应性和挥发性元件,这使导电钻石砧细胞和X射线衍射实验成为挑战。在这里,我们使用AB的初始方法来搜索Megabar压力下两个元素的稳定晶体结构。我们证明了如何将对称性和几何约束结合在一起,以有效地产生由双原子分子组成的晶体结构。我们的算法扩展了对称驱动的结构搜索方法[Phys。 Rev. B 98(2018)174107]通过增加键长的约束和分子中原子的数量,同时仍保持一般性。作为验证方法,我们已经测试了致密氢的方法,并重现了CMCA-12和CMCA-4的已知分子结构。我们将算法应用于压力范围内的氯和氟,同时考虑每个单位细胞40个原子的晶体结构。我们预计氯会遵循从CMCA到IMMM到FM $ \ bar {3} $ m的元素碘的相同相变的相同相变,但要大得多。我们预测氟在70 GPA处从C2/C到CMCA结构过渡,再到2500 GPA的P $ 4_2 $/MMC对称性的新型正骨和金属结构,最后在3000 GPA的3000 GPA上使用PM $ \ bar {3} $ nsymetry的立方模拟形式。

The high-pressure properties of fluorine and chlorine are not yet well understood because both are highly reactive and volatile elements, which has made conducting diamond anvil cell and x-ray diffraction experiments a challenge. Here we use ab initio methods to search for stable crystal structures of both elements at megabar pressures. We demonstrate how symmetry and geometric constraints can be combined to efficiently generate crystal structures that are composed of diatomic molecules. Our algorithm extends the symmetry driven structure search method [Phys. Rev. B 98 (2018) 174107] by adding constraints for the bond length and the number of atoms in a molecule, while still maintaining generality. As a method of validation, we have tested our approach for dense hydrogen and reproduced the known molecular structures of Cmca-12 and Cmca-4. We apply our algorithm to study chlorine and fluorine in the pressure range from 10--4000 GPa while considering crystal structures with up to 40 atoms per unit cell. We predict chlorine to follow the same series of phase transformations as elemental iodine from Cmca to Immm to Fm$\bar{3}$m, but at substantially higher pressures. We predict fluorine to transition from a C2/c to an Cmca structure at 70 GPa, to a novel orthorhombic and metallic structure with P$4_2$/mmc symmetry at 2500 GPa, and finally into its cubic analogue form with Pm$\bar{3}$n symmetry at 3000 GPa.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源