论文标题

IRS辅助OFDM的快速通道估计

Fast Channel Estimation for IRS-Assisted OFDM

论文作者

Zheng, Beixiong, You, Changsheng, Zhang, Rui

论文摘要

在这封信中,我们研究了智能反射表面(IRS)辅助正交频施加多路复用(OFDM)系统的有效信道估计,以达到最小的训练时间。首先,为任意频率选择性褪色通道提出了一个快速的通道估计方案,提出了降低OFDM符号持续时间。接下来,在典型的条件下,IRS使用通道是视线线(LOS)主导,这是基于采样的新型IRS反射变化的新型快速通道估计方案。此外,针对这两个方案共同优化了试点信号和IRS训练反射模式。最后,通过模拟和基准方案比较了提出的方案。

In this letter, we study efficient channel estimation for an intelligent reflecting surface (IRS)-assisted orthogonal frequency division multiplexing (OFDM) system to achieve minimum training time. First, a fast channel estimation scheme with reduced OFDM symbol duration is proposed for arbitrary frequency-selective fading channels. Next, under the typical condition that the IRS-user channel is line-of-sight (LoS) dominant, another fast channel estimation scheme based on the novel concept of sampling-wise IRS reflection variation is proposed. Moreover, the pilot signal and IRS training reflection pattern are jointly optimized for both proposed schemes. Finally, the proposed schemes are compared in terms of training time and channel estimation performance via simulations, as well as against benchmark schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源