论文标题
R-MNET:用于图像插图的感知对抗网络
R-MNet: A Perceptual Adversarial Network for Image Inpainting
论文作者
论文摘要
面部图像浇筑是一个广泛研究的问题,近年来,引入生成对抗网络已导致该领域的改善。不幸的是,有些问题仍然存在,特别是在将缺失的像素与可见的像素混合时。我们通过提出一个wasserstein gan与新的反向掩码操作员,即反向掩盖网络(R-MNET),这是一个可感知的对抗网络,用于图像插入。反向掩码操作员将反向掩蔽的图像传输到编码器折叠网络的末端,而仅保留有效的像素。此外,我们提出了在特征空间中计算出的新损失函数,以仅针对有效像素与对抗训练相结合。然后,这些捕获数据分布并生成与训练数据中的图像相似,并在输出图像上实现了现实主义(现实和连贯)。我们在公开可用的数据集上评估了我们的方法,并与最先进的方法进行了比较。我们表明,我们的方法能够将其推广到高分辨率入门任务,并进一步显示出与最新方法相比,人类视觉系统合理的更现实的输出。
Facial image inpainting is a problem that is widely studied, and in recent years the introduction of Generative Adversarial Networks, has led to improvements in the field. Unfortunately some issues persists, in particular when blending the missing pixels with the visible ones. We address the problem by proposing a Wasserstein GAN combined with a new reverse mask operator, namely Reverse Masking Network (R-MNet), a perceptual adversarial network for image inpainting. The reverse mask operator transfers the reverse masked image to the end of the encoder-decoder network leaving only valid pixels to be inpainted. Additionally, we propose a new loss function computed in feature space to target only valid pixels combined with adversarial training. These then capture data distributions and generate images similar to those in the training data with achieved realism (realistic and coherent) on the output images. We evaluate our method on publicly available dataset, and compare with state-of-the-art methods. We show that our method is able to generalize to high-resolution inpainting task, and further show more realistic outputs that are plausible to the human visual system when compared with the state-of-the-art methods.