论文标题

循环空间上的模棱两可的滑轮

Equivariant sheaves on loop spaces

论文作者

Arkhipov, Sergey, Ørsted, Sebastian

论文摘要

让$ x $成为售价,平滑和noetherian计划,超过$ \ mathbb {c} $由Aggine代数组$ g $采用的。应用了Arkhipov和Ørsted(2018a,2018b)开发的技术,我们为DG-Modules的派生类别定义了DG模型,而不是差异形式的DG-Algebra $ x $ equivariant上的dg-algebra $ x $ equivariant,以涉及派生的组方案$(g,g,ω__g)的动作。我们将获得的DG类别与Coherent Sheaves在Arkhipov和Kanstrup(2015)中所考虑的DG类别进行了比较,该类别在$ T^* X $的衍生汉密尔顿降低中给出了。

Let $X$ be an affine, smooth, and Noetherian scheme over $\mathbb{C}$ acted on by an affine algebraic group $G$. Applying the technique developed in Arkhipov and Ørsted (2018a, 2018b), we define a dg-model for the derived category of dg-modules over the dg-algebra of differential forms $Ω_X$ on $X$ equivariant with respect to the action of a derived group scheme $(G ,Ω_G )$. We compare the obtained dg-category with the one considered in Arkhipov and Kanstrup (2015) given by coherent sheaves on the derived Hamiltonian reduction of $T^* X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源