论文标题

多元时间序列预测和解释的时空注意

Spatiotemporal Attention for Multivariate Time Series Prediction and Interpretation

论文作者

Gangopadhyay, Tryambak, Tan, Sin Yong, Jiang, Zhanhong, Meng, Rui, Sarkar, Soumik

论文摘要

在许多机器学习应用程序域中,多元时间序列建模和预测问题很丰富。明确捕获时间相关性的机器学习模型中对这种预测结果的准确解释可以显着使领域专家受益。在这种情况下,已经成功地应用了时间关注以隔离输入时间序列的重要时间步骤。但是,在多元时间序列问题中,空间解释对于了解不同变量对模型输出的贡献也至关重要。我们提出了一种新型的深度学习结构,称为时空注意机制(StAM),用于同时学习最重要的时间步骤和变量。 Stam是一种因果关系(即,仅取决于过去的输入,不使用未来的输入),并且可扩展(即变量数量的增加)方法与计算障碍性方面相当。我们在两个流行的公共数据集和一个特定领域的数据集上演示了模型的性能。与基线模型相比,结果表明,Stam保持最先进的预测准确性,同时提供了准确的时空解释性的好处。从域知识的角度来看,对这些现实世界数据集的域知识的角度验证了所学的注意力。

Multivariate time series modeling and prediction problems are abundant in many machine learning application domains. Accurate interpretation of such prediction outcomes from a machine learning model that explicitly captures temporal correlations can significantly benefit the domain experts. In this context, temporal attention has been successfully applied to isolate the important time steps for the input time series. However, in multivariate time series problems, spatial interpretation is also critical to understand the contributions of different variables on the model outputs. We propose a novel deep learning architecture, called spatiotemporal attention mechanism (STAM) for simultaneous learning of the most important time steps and variables. STAM is a causal (i.e., only depends on past inputs and does not use future inputs) and scalable (i.e., scales well with an increase in the number of variables) approach that is comparable to the state-of-the-art models in terms of computational tractability. We demonstrate our models' performance on two popular public datasets and a domain-specific dataset. When compared with the baseline models, the results show that STAM maintains state-of-the-art prediction accuracy while offering the benefit of accurate spatiotemporal interpretability. The learned attention weights are validated from a domain knowledge perspective for these real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源