论文标题
牛顿液滴的热毛细血管运动悬浮在粘弹性流体中
Creeping thermocapillary motion of a Newtonian droplet suspended in a viscoelastic fluid
论文作者
论文摘要
在这项工作中,我们从理论上考虑了牛顿液滴在外部施加的温度梯度的影响下在原本静止的无限粘弹性流体中移动的问题。外流体是由Oldroyd-B方程建模的,并且根据双重扰动的扩展,对小魏森堡和毛细管数量解决了问题。 我们假设微重力条件并忽略了能量和动量的对流运输。我们根据两种流体的性质得出了液滴迁移速度及其形状的表达式。在没有形状变形的情况下,对于足够粘性的内流体,液滴速度会单调降低,而对于内部对方粘度比较小的流体,液滴速度首先增加,然后作为Weissenberg数量的函数降低。对于毛细管数的小但有限的值,液滴速度的表现是毛细管和魏森贝格数的固定比率的施加温度梯度的函数。我们证明,这种行为与聚合应力有关,将液滴朝向迁移方向变形,而相关的速度变化本质上是牛顿的,与液滴的流体动力抗性及其内部温度分布有关。与数值模拟的结果相比,我们的理论表现出良好的预测能力,对于足够小的毛细管和魏森伯格数量值。
In this work we consider theoretically the problem of a Newtonian droplet moving in an otherwise quiescent infinite viscoelastic fluid under the influence of an externally applied temperature gradient. The outer fluid is modelled by the Oldroyd-B equation, and the problem is solved for small Weissenberg and Capillary numbers in terms of a double perturbation expansion. We assume microgravity conditions and neglect the convective transport of energy and momentum. We derive expressions for the droplet migration speed and its shape in terms of the properties of both fluids. In the absence of shape deformation, the droplet speed decreases monotonically for sufficiently viscous inner fluids, while for fluids with a smaller inner-to-outer viscosity ratio, the droplet speed first increases and then decreases as a function of the Weissenberg number. For small but finite values of the Capillary number, the droplet speed behaves monotonically as a function of the applied temperature gradient for a fixed ratio of the Capillary and Weissenberg numbers. We demonstrate that this behaviour is related to the polymeric stresses deforming the droplet in the direction of its migration, while the associated changes in its speed are Newtonian in nature, being related to a change in the droplet's hydrodynamic resistance and its internal temperature distribution. When compared to the results of numerical simulations, our theory exhibits a good predictive power for sufficiently small values of the Capillary and Weissenberg numbers.