论文标题

多功能性控制:基于加利福尼亚州Aplysia的生物启发的控制

Control for Multifunctionality: Bioinspired Control Based on Feeding in Aplysia californica

论文作者

Webster-Wood, Victoria A., Gill, Jeffrey P., Thomas, Peter J., Chiel, Hillel J.

论文摘要

动物表现出极大的行为灵活性和多功能控制,对于机器人系统仍然具有挑战性。动物多功能性的神经和形态基础可以为机器人控制器提供生物启发性的来源。但是,许多现有的建模生物神经网络的方法都依赖于计算昂贵的模型,并且倾向于仅关注神经系统,通常会忽略周围的生物力学。结果,尽管这些模型是神经科学的出色工具,但它们无法实时预测功能行为,这是机器人控制的关键能力。为了满足实时多功能控制的需求,我们开发了一个混合布尔模型框架,能够以比实时更快的速度建模神经爆发活动和简单的生物力学。使用这种方法,我们提出了一个多功能的加利福尼亚州喂养模型,该模型质量地重现了三种关键的喂养行为(咬,吞咽和拒绝),证明了响应外部感觉提示的行为切换,并结合了已知的神经连接性和简单的生物启动机械模型。我们证明该模型可用于制定可检验的假设,并讨论这种方法对机器人控制和神经科学的含义。

Animals exhibit remarkable feats of behavioral flexibility and multifunctional control that remain challenging for robotic systems. The neural and morphological basis of multifunctionality in animals can provide a source of bio-inspiration for robotic controllers. However, many existing approaches to modeling biological neural networks rely on computationally expensive models and tend to focus solely on the nervous system, often neglecting the biomechanics of the periphery. As a consequence, while these models are excellent tools for neuroscience, they fail to predict functional behavior in real time, which is a critical capability for robotic control. To meet the need for real-time multifunctional control, we have developed a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time. Using this approach, we present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors (biting, swallowing, and rejection), demonstrates behavioral switching in response to external sensory cues, and incorporates both known neural connectivity and a simple bioinspired mechanical model of the feeding apparatus. We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源