论文标题

机器学习暗物质Subhalos的命运:一个模糊的水晶球

Machine Learning the Fates of Dark Matter Subhalos: A Fuzzy Crystal Ball

论文作者

Petulante, Abigail, Berlind, Andreas A., Holley-Bockelmann, J. Kelly, Sinha, Manodeep

论文摘要

暗物质在暗物质中的演变只有模拟纯粹是由纽顿重力支配,使清洁的测试床位确定什么光环属性驱动其命运。使用机器学习,我们预测了苏巴洛斯在宇宙学N-Body中的生存,质量损失,最终位置和合并时间的时间,重点是什么instantane n-boty模拟,侧重于最初的初始特​​征,却是halo的最初功能,以及halo的互动,以及大多数相互作用,并且相互作用,并且大多数相互作用。可以很好地预测生存率,我们的模型仅使用初始相互作用中的3个模型输入达到96.5%的精度。但是,我们大部分样本的真实数量和预测数量之间的质量损失,最终位置和合并时间更为随机过程,并且存在很大的误差率。红移,冲击角度,相对速度以及宿主和subhalo的质量是确定次荷兰进化的唯一相关初始输入。通常,在我们所有最终结果中,对Z = 0.67-0.43的中端进入其宿主的Subhalos是对所有最终结果进行预测的最具挑战性的。更垂直于主机的subhalo轨道也更容易预测,除非预测中断的情况,而相反的情况似乎是正确的。我们得出的结论是,在N体模拟中,单个Subhalos的详细演变很难预测,这表明合并过程中的随机性。我们讨论对模拟和观察的影响

The evolution of a dark matter halo in a dark matter only simulation is governed purely byNewtonian gravity, making a clean testbed to determine what halo properties drive its fate.Using machine learning, we predict the survival, mass loss, final position, and merging time of subhalos within a cosmological N-body simulation, focusing on what instantaneous initial features of the halo, interaction, and environment matter most. Survival is well predicted, with our model achieving 96.5% accuracy using only 3 model inputs from the initial interaction.However, the mass loss, final location, and merging times are much more stochastic processes, with significant margins of error between the true and predicted quantities for much of our sample. The redshift, impact angle, relative velocity, and the masses of the host and subhalo are the only relevant initial inputs for determining subhalo evolution. In general, subhalos that enter their hosts at a mid-range of redshifts (typically z = 0.67-0.43) are the most challenging to make predictions for, across all of our final outcomes. Subhalo orbits that come in more perpendicular to the host are also easier to predict, except for in the case of predicting disruption, where the opposite appears to be true. We conclude that the detailed evolution of individual subhalos within N-body simulations is quite difficult to predict, pointing to a stochasticity in the merging process. We discuss implications for both simulations and observations

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源