论文标题

非全面机器人动态限制的运动计划网络

Dynamically Constrained Motion Planning Networks for Non-Holonomic Robots

论文作者

Johnson, Jacob J., Li, Linjun, Liu, Fei, Qureshi, Ahmed H., Yip, Michael C.

论文摘要

在当今快速扩展的自动化生态系统中,对机器人的可靠实时规划至关重要。在这样的环境中,对于运动限制的机器人,通过放松约束来计划的传统方法变得不可靠或减速。本文介绍了算法动态运动计划网络(动态MPNET),即运动计划网络的扩展,针对使用神经计划方法来应对实时运动计划的挑战。我们建议对培训和规划网络进行修改,使实时计划成为可能,同时提高培训和受过培训模型的可推广性的数据效率。我们在模拟中评估了非全面机器人计划任务的模型。我们还使用Dubins Car展示了室内导航任务的实验结果。

Reliable real-time planning for robots is essential in today's rapidly expanding automated ecosystem. In such environments, traditional methods that plan by relaxing constraints become unreliable or slow-down for kinematically constrained robots. This paper describes the algorithm Dynamic Motion Planning Networks (Dynamic MPNet), an extension to Motion Planning Networks, for non-holonomic robots that address the challenge of real-time motion planning using a neural planning approach. We propose modifications to the training and planning networks that make it possible for real-time planning while improving the data efficiency of training and trained models' generalizability. We evaluate our model in simulation for planning tasks for a non-holonomic robot. We also demonstrate experimental results for an indoor navigation task using a Dubins car.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源