论文标题
细胞内代谢物浓度的可扩展计算
Scalable computation of intracellular metabolite concentrations
论文作者
论文摘要
用于预测细胞通量状态和大分子组成的当前数学框架不依赖热力学约束来确定反应的自发方向。因此,这些预测在生物学上可能是不可行的。施加热力学约束需要对细胞内代谢产物浓度进行准确的估计。这些浓度在生理可能的范围内受到限制,以使生物体在极端条件下生长并适应其环境。在这里,我们引入了可拖动的计算技术,以表征基于约束的建模框架内细胞内代谢物浓度。该模型提供了一个可行的浓度集,通常可以是非凸和断开连接的。我们根据多项式优化,随机采样和全局优化研究了三种方法。我们利用基本生物物理模型的稀疏性和代数结构来提高这些技术的计算效率。然后,我们比较了他们在两个案例研究中的表现,表明与随机抽样和多项式优化公式相比,全球优化的配方表现出更理想的缩放特性,因此是处理大型代谢网络的有前途的候选者。
Current mathematical frameworks for predicting the flux state and macromolecular composition of the cell do not rely on thermodynamic constraints to determine the spontaneous direction of reactions. These predictions may be biologically infeasible as a result. Imposing thermodynamic constraints requires accurate estimations of intracellular metabolite concentrations. These concentrations are constrained within physiologically possible ranges to enable an organism to grow in extreme conditions and adapt to its environment. Here, we introduce tractable computational techniques to characterize intracellular metabolite concentrations within a constraint-based modeling framework. This model provides a feasible concentration set, which can generally be nonconvex and disconnected. We examine three approaches based on polynomial optimization, random sampling, and global optimization. We leverage the sparsity and algebraic structure of the underlying biophysical models to enhance the computational efficiency of these techniques. We then compare their performance in two case studies, showing that the global-optimization formulation exhibits more desirable scaling properties than the random-sampling and polynomial-optimization formulation, and, thus, is a promising candidate for handling large-scale metabolic networks.