论文标题

$(g,χ_ϕ)$ - 非局部顶点代数

$(G,χ_ϕ)$-equivariant $ϕ$-coordinated quasi modules for nonlocal vertex algebras

论文作者

Jing, Naihuan, Kong, Fei, Li, Haisheng, Tan, Shaobin

论文摘要

在本文中,我们研究了$(g,χ_D)$ - 非局部顶点代数的$ norianiant $ ϕ $ - 协调的准模块。在主要结果中,我们建立了几个概念上的结果,包括通用的换向器公式和弱量子顶点代数的一般结构及其$(g,χ_ϕ)$ - epoivariant $ ϕ $ coasi-coy-coordined quasi模块。作为一个应用程序,我们还通过使用Lepowsky在扭曲的顶点操作员上的工作来构建(Equivariant)$ ϕ $协调的准顶点代数模块。

In this paper, we study $(G,χ_ϕ)$-equivariant $ϕ$-coordinated quasi modules for nonlocal vertex algebras. Among the main results, we establish several conceptual results, including a generalized commutator formula and a general construction of weak quantum vertex algebras and their $(G,χ_ϕ)$-equivariant $ϕ$-coordinated quasi modules. As an application, we also construct (equivariant) $ϕ$-coordinated quasi modules for lattice vertex algebras by using Lepowsky's work on twisted vertex operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源