论文标题
一种新型的CMAQ-CNN混合模型,以预测每小时的表面浓度14天
A Novel CMAQ-CNN Hybrid Model to Forecast Hourly Surface-Ozone Concentrations Fourteen Days in Advance
论文作者
论文摘要
关于空气质量和相关健康问题的问题促使了这项研究,该研究开发了一种准确,计算快速,有效的混合建模系统,该系统结合了数值建模和机器学习,以预测表面臭氧的浓度。当前可用于空气质量预测的数值建模系统(例如CMAQ,NCEP EMP)可以提前24至48小时预测。在这项研究中,我们开发了一个基于卷积神经网络(CNN)模型的建模系统,该模型不仅快,而且涵盖了两个星期的时间,分辨率为255个站的一个小时。 CNN模型使用天气研究和预测模型的预测气象学(由气象学化学接口处理器处理),社区多规模空气质量模型(CMAQ)的预测空气质量,以及以前的24小时浓度的各种可测量的空气质量参数,作为输入和预测以下的14天小时的浓度。该模型的平均准确性是第一天的一致指数的平均准确度为0.91,第十四天达到了0.78,而从CMAQ提前一天预测的平均协议指数为0.77。通过这项研究,我们打算将数值建模的最佳特征(即精细的空间分辨率)和深神经网络(即计算速度和准确性)融合在一起,以实现每小时臭氧浓度的更准确的时空预测。尽管这项研究的主要目的是预测小时的臭氧浓度,但该系统可以扩展到其他各种污染物。
Issues regarding air quality and related health concerns have prompted this study, which develops an accurate and computationally fast, efficient hybrid modeling system that combines numerical modeling and machine learning for forecasting concentrations of surface ozone. Currently available numerical modeling systems for air quality predictions (e.g., CMAQ, NCEP EMP) can forecast 24 to 48 hours in advance. In this study, we develop a modeling system based on a convolutional neural network (CNN) model that is not only fast but covers a temporal period of two weeks with a resolution as small as a single hour for 255 stations. The CNN model uses forecasted meteorology from the Weather Research and Forecasting model (processed by the Meteorology-Chemistry Interface Processor), forecasted air quality from the Community Multi-scale Air Quality Model (CMAQ), and previous 24-hour concentrations of various measurable air quality parameters as inputs and predicts the following 14-day hourly surface ozone concentrations. The model achieves an average accuracy of 0.91 in terms of the index of agreement for the first day and 0.78 for the fourteenth day while the average index of agreement for one day ahead prediction from the CMAQ is 0.77. Through this study, we intend to amalgamate the best features of numerical modeling (i.e., fine spatial resolution) and a deep neural network (i.e., computation speed and accuracy) to achieve more accurate spatio-temporal predictions of hourly ozone concentrations. Although the primary purpose of this study is the prediction of hourly ozone concentrations, the system can be extended to various other pollutants.