论文标题

鲁迪亚克猜想的手术方法

Surgery Approach to Rudyak's Conjecture

论文作者

Dranishnikov, Alexander, Scott, Jamie

论文摘要

使用手术,我们证明了以下内容:定理。令$ f:m \ to n $为封闭的歧管之间的普通图,$ n $为$(r-1)$ - 连接,$ r \ ge 1 $。如果$ n $满足不平等$ \ dim n \ leq 2r \ cat n -3 $,则适用于lusternik -schnirelmann类别$ \ cat m \ geq \ geq \ cat n $。

Using the surgery we prove the following: THEOREM. Let $f:M \to N$ be a normal map of degree one between closed manifolds with $N$ being $(r-1)$-connected, $r\ge 1$. If $N$ satisfies the inequality $\dim N \leq 2r \cat N - 3$, then for the Lusternik-Schnirelmann category $\cat M \geq \cat N$ .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源