论文标题
与复杂的高斯拟合连续波效应:电离横截面的计算
Fitting continuum wavefunctions with complex Gaussians: Computation of ionization cross sections
论文作者
论文摘要
我们实施一种完整的非线性优化方法,以拟合连续态与复杂的高斯人。应用于一组常规散射库仑功能,使我们能够验证数值可行性,探索方法的收敛范围,并证明复合物的相对优越性比实际高斯膨胀。然后,我们考虑原子氢的光离子化,并在第一个诞生的近似中通过电子撞击电离,为此,闭合形式的横截面是实体基准。使用拟议的连续体的复杂高斯表示与初始结合状态的真实高斯膨胀相结合,部分波浪方法中的所有必要的矩阵元素都已分析。成功的数值比较表明,所提出的全高斯方法在一个中心目标的电离过程中有效地工作。
We implement a full nonlinear optimization method to fit continuum states with complex Gaussians. The application to a set of regular scattering Coulomb functions allows us to validate the numerical feasibility, to explore the range of convergence of the approach, and to demonstrate the relative superiority of complex over real Gaussian expansions. We then consider the photoionization of atomic hydrogen, and ionization by electron impact in the first Born approximation, for which the closed form cross sections serve as a solid benchmark. Using the proposed complex Gaussian representation of the continuum combined with a real Gaussian expansion for the initial bound state, all necessary matrix elements within a partial wave approach become analytical. The successful numerical comparison illustrates that the proposed all-Gaussian approach works efficiently for ionization processes of one-center targets.