论文标题

通过神经网络控制器学习lyapunov的功能

Learning Lyapunov Functions for Piecewise Affine Systems with Neural Network Controllers

论文作者

Chen, Shaoru, Fazlyab, Mahyar, Morari, Manfred, Pappas, George J., Preciado, Victor M.

论文摘要

我们提出了一种基于学习的方法,用于使用分段仿射神经网络控制器反馈中的分段仿射动力学系统的Lyapunov稳定性分析。所提出的方法包括学习者和验证者之间的迭代相互作用,在每个迭代中,学习者使用闭环系统的样本集合来提出lyapunov函数候选者作为凸面程序的解决方案。然后,学习者查询验证者,该验证者解决了一个混合企业程序以验证提出的Lyapunov功能候选者或使用反例,即稳定性条件失败的状态。然后将此反例添加到学习者的样本集中,以完善Lyapunov功能候选者的集合。我们基于分析中心的切割平面方法设计学习者和验证者,其中验证者充当切割平面甲骨文,以完善Lyapunov功能候选者的组合。我们表明,当Lyapunov函数集在参数空间中是全维时,总体过程会在有限数量的迭代中找到Lyapunov函数。我们演示了所提出的方法在搜索二次和分段二次lyapunov函数方面的实用性。

We propose a learning-based method for Lyapunov stability analysis of piecewise affine dynamical systems in feedback with piecewise affine neural network controllers. The proposed method consists of an iterative interaction between a learner and a verifier, where in each iteration, the learner uses a collection of samples of the closed-loop system to propose a Lyapunov function candidate as the solution to a convex program. The learner then queries the verifier, which solves a mixed-integer program to either validate the proposed Lyapunov function candidate or reject it with a counterexample, i.e., a state where the stability condition fails. This counterexample is then added to the sample set of the learner to refine the set of Lyapunov function candidates. We design the learner and the verifier based on the analytic center cutting-plane method, in which the verifier acts as the cutting-plane oracle to refine the set of Lyapunov function candidates. We show that when the set of Lyapunov functions is full-dimensional in the parameter space, the overall procedure finds a Lyapunov function in a finite number of iterations. We demonstrate the utility of the proposed method in searching for quadratic and piecewise quadratic Lyapunov functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源