论文标题

广义线性阈值模型,用于改进扩展动力学的描述

A generalized linear threshold model for an improved description of the spreading dynamics

论文作者

Ran, Yijun, Deng, Xiaomin, Wang, Xiaomeng, Jia, Tao

论文摘要

我们现实生活中的许多扩散过程都可以视为复杂的传染性,并且线性阈值(LT)模型通常被用作该机制的非常有代表性的模型。尽管使用了大量使用,但LT模型在描述扩散的时间演变时仍存在一些局限性。首先,捕获传播速度的离散时间步骤被模糊地定义了。其次,同步更新规则使批处理中的节点不考虑个体差异。最后,LT模型与简单传染的现有模型不相容。在这里,我们考虑了连续时间随机复杂传染过程的广义线性阈值(GLT)模型,该过程可以由Gillespie算法有效地实现。该模型中的时间具有清晰的数学定义,并且更新顺序是严格的定义。我们发现,传统的LT模型系统地低估了扩散序列顺序的扩展速度和随机性。我们还表明,GLT模型与易感感染(SI)或易感感染的(SIR)模型无缝工作。人们可以轻松地将它们结合起来,以建模混合扩散过程,在这种过程中,简单的传染物积累了导致全局级联的复杂传染的临界质量。总体而言,我们提出的GLT模型可以是研究复杂传染的有用工具,尤其是在研究扩散的时间演变时。

Many spreading processes in our real-life can be considered as a complex contagion, and the linear threshold (LT) model is often applied as a very representative model for this mechanism. Despite its intensive usage, the LT model suffers several limitations in describing the time evolution of the spreading. First, the discrete-time step that captures the speed of the spreading is vaguely defined. Second, the synchronous updating rule makes the nodes infected in batches, which can not take individual differences into account. Finally, the LT model is incompatible with existing models for the simple contagion. Here we consider a generalized linear threshold (GLT) model for the continuous-time stochastic complex contagion process that can be efficiently implemented by the Gillespie algorithm. The time in this model has a clear mathematical definition and the updating order is rigidly defined. We find that the traditional LT model systematically underestimates the spreading speed and the randomness in the spreading sequence order. We also show that the GLT model works seamlessly with the susceptible-infected (SI) or susceptible-infected-recovered (SIR) model. One can easily combine them to model a hybrid spreading process in which simple contagion accumulates the critical mass for the complex contagion that leads to the global cascades. Overall, the GLT model we proposed can be a useful tool to study complex contagion, especially when studying the time evolution of the spreading.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源