论文标题
来自离散Galois领域的Nakano-Nishijima-Gell-Mann公式
The Nakano-Nishijima-Gell-Mann Formula From Discrete Galois Fields
论文作者
论文摘要
众所周知的nakano-nishijima-gell-mann(NNG)公式将一定量子数的基本粒子与其电荷数量相关联。这个方程式在现象学上引入了量子数字$ i_z $(isospin),$ s $(strangeness)等,是使用具有实数$ \ mathbb {r} $的组理论构建的。但是,使用离散的Galois字段$ \ MATHBB {F} _p $,而不是$ \ Mathbb {r} $,并确保基本不变性法律,例如Unitarity,Lorentz不变性和规程不变性,我们从Meson(Meson(Meson)(两种Quarks)和Baryss(Quarks)和Baryon(a Quarks)(undied)和Baryon(a faryon)(undifor)(undifor)和baryon(a faryon)(undifor)和baryon(quarks)(undife)(undife)(quarks)和三farys faryon(a faryon(quarkss))(均为三faryon)(此外,我们表明,夸克的限制归因于由同胞素的半数(1/2)和复合粒子数量(例如三个)之间的共同点(1/2)。
The well known Nakano-Nishijima-Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers $I_z$ (isospin), $S$ (strangeness), etc., is constructed using group theory with real numbers $\mathbb{R}$. But, using a discrete Galois field $\mathbb{F}_p$ instead of $\mathbb{R}$ and assuring the fundamental invariance laws such as unitarity, Lorentz invariance, and gauge invariance, we derive the NNG formula deductively from Meson (two quarks) and Baryon (three quarks) representations in a unified way. Moreover, we show that quark confinement ascribes to the inevitable fractionality caused by coprimeness between half-integer (1/2) of isospin and number of composite particles (e.g. three).