论文标题
一种用于整合系统热力学的图形方法
A diagrammatic approach towards the thermodynamics of integrable systems
论文作者
论文摘要
我们提出了一种精确的求和方法,以计算可观察到的可观察到的可观察到的量子场理论。关键思想是使用矩阵定理来编写出现在群集扩展中的高丁决定因素作为图形的总和。对于具有对角线S-矩阵的理论,该方法比标准热力学伯特ANSATZ(TBA)技术更强大,因为这对于逆体积的所有功率均确切。我们已经使用这种方法获得了TBA方程,有限体积的激发状态能,用于一个点函数的Leclair-Mussardo公式,有限温度的边界熵以及广义Gibbs Encemembles中保守电荷的累积物。此外,该图扩展也可以视为涉及Gaudin决定因素的代数操作的替代方法。我们已经应用了这一想法来得出广义流体动力学中的状态和其他运输特性的方程。对于具有非对角性S-Matrix的理论,对一组状态的描述更加参与,并且不知道如何实现群集扩展。然而,可以将直接求和方法在反向中应用,并解释已知的TBA方程,并在图表上使用复杂的字符串。
We propose an exact summation method to compute thermodynamic observables in integrable quantum field theories. The key idea is to use the matrix-tree theorem to write the Gaudin determinants that appear in the cluster expansion as a sum over graphs. For theories with a diagonal S-matrix, this method is more powerful than the standard Thermodynamic Bethe Ansatz (TBA) technique as it is exact to all orders of powers in inverse volume. We have obtained using this method the TBA equation, the excited state energies in finite volume, the Leclair-Mussardo formula for one point functions, the finite-temperature boundary entropy and cumulants of conserved charges in Generalized Gibbs Ensembles. Moreover, the graph expansion can also be regarded as an alternative to algebraic manipulations involving Gaudin determinants. We have applied this idea to derive the equations of state and other transport properties in Generalized Hydrodynamics. For theories with a non-diagonal S-matrix, the description of a complete set of states is more involved and it is not known how a cluster expansion can be implemented. It is nevertheless possible to apply the direct summation method in reverse and interpret known TBA equations with complex strings in terms of diagrams.