论文标题
通过无监督的深度学习,虚拟Brightfield和荧光染色
Virtual brightfield and fluorescence staining for Fourier ptychography via unsupervised deep learning
论文作者
论文摘要
傅立叶Ptychographic显微镜(FPM)是一种计算方法,旨在创建高分辨率和大型视野图像而无需机械扫描。为了获取组织学幻灯片的颜色图像,它通常需要带有红色,绿色和蓝色照明的顺序采集。颜色的重建通常会遭受一致的伪影,这些伪影在常规的不连贯显微镜图像中未呈现。结果,在分辨率和颜色准确性至关重要的情况下,将FPM用于数字病理应用程序仍然是一个挑战。在这里,我们报告了一种深入学习方法,用于执行FPM重建的无监督图像到图像翻译。训练具有多尺度结构相似性损失的周期一致的对抗网络,以执行恢复的FPM图像的虚拟Brightfield和荧光染色。在训练阶段,我们使用两组未配对的图像为网络供电:1)单色FPM恢复,以及2)使用常规显微镜捕获的颜色或荧光图像。在推理阶段,网络采用FPM输入,并输出几乎染色的图像,具有降低的相干人工制品和改进的图像质量。我们测试具有不同染色方案的各种样品的方法。高质量的颜色和荧光重建验证其有效性。
Fourier ptychographic microscopy (FPM) is a computational approach geared towards creating high-resolution and large field-of-view images without mechanical scanning. To acquire color images of histology slides, it often requires sequential acquisitions with red, green, and blue illuminations. The color reconstructions often suffer from coherent artifacts that are not presented in regular incoherent microscopy images. As a result, it remains a challenge to employ FPM for digital pathology applications, where resolution and color accuracy are of critical importance. Here we report a deep learning approach for performing unsupervised image-to-image translation of FPM reconstructions. A cycle-consistent adversarial network with multiscale structure similarity loss is trained to perform virtual brightfield and fluorescence staining of the recovered FPM images. In the training stage, we feed the network with two sets of unpaired images: 1) monochromatic FPM recovery, and 2) color or fluorescence images captured using a regular microscope. In the inference stage, the network takes the FPM input and outputs a virtually stained image with reduced coherent artifacts and improved image quality. We test the approach on various samples with different staining protocols. High-quality color and fluorescence reconstructions validate its effectiveness.