论文标题
可能的GRB祖细胞的磁核核心崩溃。 iii。三维模型
Magnetorotational core collapse of possible GRB progenitors. III. Three-dimensional models
论文作者
论文摘要
我们探讨了非轴对称模式对旋转,磁化高质量恒星折叠核心的动力学的影响,在三维式旋转的恒星的三维模拟中,初始质量为$ M_ {ZAMS} $ = 35个太阳能质量,具有四个不同的磁场模型,包括磁场的四个不同的预处理,以及在磁场上进行了非常强大的范围,以及范围非常强大的范围,以及范围内的范围,构成了范围的范围。最弱磁场的模型由于中微子加热而导致的减震层,其特征是以大规模的,流体动力的M = 1螺旋模式。后来,原始恒星的不断增长的磁场会向早期喷射发射弱流出。它们的方向遵循原始恒星的旋转轴的演变,由于撞击其表面上的不对称积聚流,该恒星的旋转轴开始从原始方向倾斜。具有更强磁化强度的模型会产生轻度相对论,磁性驱动的极性流出,在几次100毫秒内传播$ 10^4 $ km。这些喷气机可以通过快速传播和环形磁场的剪切作用来稳定在破坏性的非轴对称不稳定性的情况下。在大约1 s的仿真时间内,爆炸达到中等能量,原始恒星质量的生长在基本低于黑洞形成阈值的值下停止,该值与高旋转能量结合使用,可能会表明后来可能的原始磁性活性。
We explore the influence of non-axisymmetric modes on the dynamics of the collapsed core of rotating, magnetized high-mass stars in three-dimensional simulations of a rapidly rotating star with an initial mass of $M_{ZAMS}$ = 35 solar masses endowed with four different pre-collapse configurations of the magnetic field, ranging from moderate to very strong field strength and including the field predicted by the stellar evolution model. The model with the weakest magnetic field achieves shock revival due to neutrino heating in a gain layer characterized by a large-scale, hydrodynamic m = 1 spiral mode. Later on, the growing magnetic field of the proto-neutron star launches weak outflows into the early ejecta. Their orientation follows the evolution of the rotational axis of the proto-neutron star, which starts to tilt from the original orientation due to the asymmetric accretion flows impinging on its surface. The models with stronger magnetization generate mildly relativistic, magnetically driven polar outflows propagating over a distance of $10^4$ km within a few 100 ms. These jets are stabilized against disruptive non-axisymmetric instabilities by their fast propagation and by the shear of their toroidal magnetic field. Within the simulation times of around 1 s, the explosions reach moderate energies and the growth of the proto-neutron star masses ceases at values substantially below the threshold for black hole formation, which, in combination with the high rotational energies, might suggest a possible later proto-magnetar activity.