论文标题

$ p $ -adic hurwitz型Euler Zeta函数满足的无限订单线性微分方程

Infinite order linear differential equation satisfied by $p$-adic Hurwitz-type Euler zeta functions

论文作者

Hu, Su, Kim, Min-Soo

论文摘要

1900年,在国际数学家大会上,希尔伯特声称Riemann Zeta函数$ζ$不是对其分析性区域的任何代数普通微分方程的解决方案。在2015年,Van Gorder考虑了一个问题,即$ζ$是否满足非代数微分方程,并表明它正式满足无限顺序线性微分方程。最近,Prado和Klinger-Logan Extended Van Gorder的结果表明Hurwitz Zeta函数$ζ(S,A)$也正式满足类似的微分方程\ Begin \ begin {equation*} \ label {hurde} t \ left [ζ(s,a) - \ frac {1} {a^s} \ right] = \ frac {1} {(s-1)a^{s-1}}。 \ end {equation*},但不幸的是,在同一篇论文中,他们证明了应用于Hurwitz Zeta函数$ζ(S,A)$在复杂平面$ \ Mathbb {C C} $的任何点上都不会收敛。 In this paper, by defining $T_{p}^{a}$, a $p$-adic analogue of Van Gorder's operator $T,$ we establish an analogue of Prado and Klinger-Logan's differential equation satisfied by $ζ_{p,E}(s,a)$ which is the $p$-adic analogue of the Hurwitz-type Euler zeta functions \ begin {qore*} \ label {hez}ζ_e(s,a)= \ sum_ {n = 0}^\ infty \ frac {( - 1)^n} {(n+a)^s}。与复杂情况相反,由于非架构属性,运算符$ t_ {p}^{a} $适用于$ p $ -P $ -ADIC HURWITZ-TYPE EULER ZETA函数$ p,$ p,e} $ s \ in \ mathbb {z} _ {p} $,带有$ s \ neq 1 $和$ a \ in K $,带有$ | a | _ | _ {p}> 1,$ k $是$ k $是$ \ mathbb {q} _ {q} _ {p} $ lamification and lam can y math $ $ \ $ \ p} p} p}的任何有限范围。

In 1900, at the international congress of mathematicians, Hilbert claimed that the Riemann zeta function $ζ(s)$ is not the solution of any algebraic ordinary differential equations on its region of analyticity. In 2015, Van Gorder considered the question of whether $ζ(s)$ satisfies a non-algebraic differential equation and showed that it formally satisfies an infinite order linear differential equation. Recently, Prado and Klinger-Logan extended Van Gorder's result to show that the Hurwitz zeta function $ζ(s,a)$ is also formally satisfies a similar differential equation \begin{equation*}\label{HurDE} T\left[ζ(s,a) - \frac{1}{a^s}\right] = \frac{1}{(s-1)a^{s-1}}. \end{equation*} But unfortunately in the same paper they proved that the operator $T$ applied to Hurwitz zeta function $ζ(s,a)$ does not converge at any point in the complex plane $\mathbb{C}$. In this paper, by defining $T_{p}^{a}$, a $p$-adic analogue of Van Gorder's operator $T,$ we establish an analogue of Prado and Klinger-Logan's differential equation satisfied by $ζ_{p,E}(s,a)$ which is the $p$-adic analogue of the Hurwitz-type Euler zeta functions \begin{equation*}\label{HEZ} ζ_E(s,a)=\sum_{n=0}^\infty\frac{(-1)^n}{(n+a)^s}. \end{equation*} In contrast with the complex case, due to the non-archimedean property, the operator $T_{p}^{a}$ applied to the $p$-adic Hurwitz-type Euler zeta function $ζ_{p,E}(s,a)$ is convergent $p$-adically in the area of $s\in\mathbb{Z}_{p}$ with $s\neq 1$ and $a\in K$ with $|a|_{p}>1,$ where $K$ is any finite extension of $\mathbb{Q}_{p}$ with ramification index over $\mathbb{Q}_{p}$ less than $p-1.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源