论文标题
具有非零中央扭矩的积聚光盘
Accretion discs with non-zero central torque
论文作者
论文摘要
我们提出了具有非零中央扭矩的积聚盘的分析和数值溶液。我们用单个参数($ f $)来表达这一点,该参数是从内部边界到那里角动量向内延伸的斜向动量的向外粘性通量的比率。中央边界条件为零的标准“积聚”光盘由$ f = 0 $表示。一个“决定”光盘,其中内部边界处的径向速度为零,由$ f \ rightarrow \ infty $表示。对于$ f> 0 $,在内部边界处将扭矩应用于圆盘,该圆盘将角动量和能量供应到圆盘中。例如,如果循环盘将能量和角动量从二进制转移到圆盘轨道,或者盘围绕旋转磁性星的圆盘将能量和角动量传递到旋转的磁性恒星,从而使圆盘轨道在磁层半径上向外加速。我们向圆盘结构提供稳态解决方案,该解决方案是$ f $的函数,以及任意运动粘度$ν$。对于时间依赖时间的光盘,我们使用绿色的函数方法为$ν\ propto r $的特定情况求解方程,并为$ν\ propto r^{3/2} $的方程式提供了示例数值解决方案。我们发现,对于$ f \ lyssim 0.1 $的值,光盘解决方案与“积聚”光盘非常相似。对于$ f \ gtrsim 10 $的值,解决方案最初类似于“ decretion”光盘,但在足够的较晚时期,解决方案表现出“积聚”光盘的属性。我们讨论了该理论在不同的天体物理系统中的应用,尤其是在不同情况下预期的$ f $参数的值。
We present analytical and numerical solutions for accretion discs subject to a non-zero central torque. We express this in terms of a single parameter, $f$, which is the ratio of outward viscous flux of angular momentum from the inner boundary to the inward advected flux of angular momentum there. The standard "accretion" disc, where the central boundary condition is zero-torque, is represented by $f=0$. A "decretion" disc, where the radial velocity at the inner boundary is zero, is represented by $f\rightarrow\infty$. For $f > 0$ a torque is applied to the disc at the inner boundary, which feeds both angular momentum and energy into the disc. This can arise, for example, in the case of a circumbinary disc where resonances transfer energy and angular momentum from the binary to the disc orbits, or where the disc is around a rotating magnetic star which can allow the disc orbits to be accelerated outwards at the magnetospheric radius. We present steady-state solutions to the disc structure as a function of $f$, and for arbitrary kinematic viscosity $ν$. For time-dependent discs, we solve the equations using a Green's function approach for the specific case of $ν\propto R$ and provide an example numerical solution to the equations for the case of $ν\propto R^{3/2}$. We find that for values of $f\lesssim 0.1$ the disc solutions closely resemble "accretion" discs. For values of $f \gtrsim 10$ the solutions initially resemble "decretion" discs, but at sufficiently late times exhibit the properties of "accretion" discs. We discuss the application of this theory to different astrophysical systems, and in particular the values of the $f$ parameter that are expected in different cases.